3,626 research outputs found

    Bidirectional selection for olfactory response to acetaldehyde and ethanol in Drosophila melanogaster

    Get PDF
    Drosophila melanogaster adults were successfully selected for increased and decreased olfactory response to different concentrations of acetaldehyde and ethanol, using a choice type olfactometer. The response to selection was not concentration specific. Lines were also tested with n-propanol, n-butanol, acetic acid, propionic acid, benzaldehyde, methyl acetate, ethyl acetate and 3-hydroxybutan-2-one. The behavior of the lines was similar for most of these chemicals, indicating an odorant specific response to selection. However, ethanol selected lines differed in their response to n-propanol and possibly n-butanol, suggesting a role for the alcohol group in determining the specificity of genetic variation in olfactory response. Utilization of acetic acid, ethanol and acetaldehyde as resources by the selected lines was tested using adult longevity. The only significant result was that lines selected for increased attraction to ethanol ulitised 9 p. 100 and 12 p. 100 ethanol more than lines selected for decreased attraction. Gene frequencies were monitored at 3 enzyme loci – alcohol dehydrogenase, triose phosphate isomerase, α-glycerophosphate dehydrogenase – associated with the metabolism of ethanol and acetaldehyde. There were no changes associated with the metabolism of ethanol and acetaldehyde. There were no changes associated with the response to selection, and the ADH-F allele increased in both selected and unselected lines

    The dangers of irreversibility in an age of increased uncertainty: revisiting plasticity in invertebrates

    Get PDF
    Plasticity in traits in response to environmental conditions can increase fitness, expanding the range of environments within which a genotype can generate viable and productive phenotypes, and therefore when and where populations can persist and diversify in ecological space. Adaptive forms of plasticity in invertebrates are diverse, ranging from polyphenism and diapause to behavioural thermoregulation and optimal foraging. Local patterns of environmental variation and developmental constraints will dictate which of these forms evolves. Here we review the core idea that the use of narrow developmental windows by invertebrates to attain specific types of phenotypic changes reduces their reversibility, while increasing their magnitude. These tradeoffs dictate the costs and effectiveness of plasticity in buffering environmental variation. In particular, plastic responses to narrow developmental or environmental windows increase fitness costs when predicted environmental challenges do not materialise, or when the environment changes in unpredictable ways. We then explore the converse idea that increasing trait reversibility depends on extending the period for which genotypes are sensitive to the environment, but also narrows the range of plastic phenotypes that can be generated. Considering these findings together, we would expect that the costs, benefits and constraints of reversible versus irreversible plasticity affect the rate and magnitude of adaptive responses to rapidly changing and novel environments. However, such predictions have rarely been tested or included in theoretical models. Identifying this knowledge gap leads us to propose new research directions to provide a deeper understanding of the evolution of plasticity in invertebrates and other organisms. We illustrate these possible directions through examples of Drosophila adapting to thermal stress

    The analysis of quantitative variation in natural populations with isofemale strains

    Get PDF
    Isofemale strains are having an increasing role in the analysis of variability of ecological and behavioural traits in natural populations. This paper therefore considers the association between heritability and phenotypic variation within and between isofemale strains. Heritability from an isofemale strain analysis approximates narrow heritability over a wide range of dominance values, particularly when genes contributing to variation in a trait are at intermediate frequencies. Meaningful heritability estimates require that isofemale strains are maintained at a population size greater than 50 and tested within 5 generations after establishment. Values of heritabilities for morphological traits in Drosophila melanogaster were similar to those estimated from a conventional sib analysis. Published data on isofemale strains can therefore be put into a theoretical framework. The contribution of isofemale strain analyses to the debate about the number of loci affection variation in quantitative traits is briefly discussed

    CRANKITE: a fast polypeptide backbone conformation sampler

    Get PDF
    Background: CRANKITE is a suite of programs for simulating backbone conformations of polypeptides and proteins. The core of the suite is an efficient Metropolis Monte Carlo sampler of backbone conformations in continuous three-dimensional space in atomic details. Methods: In contrast to other programs relying on local Metropolis moves in the space of dihedral angles, our sampler utilizes local crankshaft rotations of rigid peptide bonds in Cartesian space. Results: The sampler allows fast simulation and analysis of secondary structure formation and conformational changes for proteins of average length

    Mechanisms Promoting the Long-Term Persistence of a Wolbachia Infection in a Laboratory-Adapted Population of Drosophila melanogaster

    Get PDF
    Intracellular bacteria of the genus Wolbachia are widespread endosymbionts across diverse insect taxa. Despite this prevalence, our understanding of how Wolbachia persists within populations is not well understood. Cytoplasmic incompatibility (CI) appears to be an important phenotype maintaining Wolbachia in many insects, but it is believed to be too weak to maintain Wolbachia in Drosophila melanogaster, suggesting that Wolbachia must also have other effects on this species. Here we estimate the net selective effect of Wolbachia on its host in a laboratory-adapted population of D. melanogaster, to determine the mechanisms leading to its persistence in the laboratory environment. We found i) no significant effects of Wolbachia infection on female egg-to-adult survival or adult fitness, ii) no reduced juvenile survival in males, iii) substantial levels of CI, and iv) a vertical transmission rate of Wolbachia higher than 99%. The fitness of cured females was, however, severely reduced (a decline of 37%) due to CI in offspring. Taken together these findings indicate that Wolbachia is maintained in our laboratory environment due to a combination of a nearly perfect transmission rate and substantial CI. Our results show that there would be strong selection against females losing their infection and producing progeny free from Wolbachia

    Does Sex Trade with Violence among Genotypes in Drosophila melanogaster?

    Get PDF
    The evolutionary forces shaping the ability to win competitive interactions, such as aggressive encounters, are still poorly understood. Given a fitness advantage for competitive success, variance in aggressive and sexual display traits should be depleted, but a great deal of variation in these traits is consistently found. While life history tradeoffs have been commonly cited as a mechanism for the maintenance of variation, the variability of competing strategies of conspecifics may mean there is no single optimum strategy. We measured the genetically determined outcomes of aggressive interactions, and the resulting effects on mating success, in a panel of diverse inbred lines representing both natural variation and artificially selected genotypes. Males of one genotype which consistently lost territorial encounters with other genotypes were nonetheless successful against males that were artificially selected for supernormal aggression and dominated all other lines. Intransitive patterns of territorial success could maintain variation in aggressive strategies if there is a preference for territorial males. Territorial success was not always associated with male mating success however and females preferred ‘winners’ among some male genotypes, and ‘losers’ among other male genotypes. This suggests that studying behaviour from the perspective of population means may provide limited evolutionary and genetic insight. Overall patterns of competitive success among males and mating transactions between the sexes are consistent with mechanisms proposed for the maintenance of genetic variation due to nonlinear outcomes of competitive interactions

    The Impact of Climate Change on Fertility

    Get PDF
    Rising global temperatures are threatening biodiversity. Studies on the impact of temperature on natural populations usually use lethal or viability thresholds, termed the ‘critical thermal limit’ (CTL). However, this overlooks important sublethal impacts of temperature that could affect species’ persistence. Here we discuss a critical but overlooked trait: fertility, which can deteriorate at temperatures less severe than an organism’s lethal limit. We argue that studies examining the ecological and evolutionary impacts of climate change should consider the ‘thermal fertility limit’ (TFL) of species; we propose that a framework for the design of TFL studies across taxa be developed. Given the importance of fertility for population persistence, understanding how climate change affects TFLs is vital for the assessment of future biodiversity impacts

    Genome-wide transcription analysis of clinal genetic variation in Drosophila.

    Get PDF
    Clinal variation in quantitative traits is widespread, but its genetic basis awaits identification. Drosophila melanogaster shows adaptive, clinal variation in traits such as body size along latitudinal gradients on multiple continents. To investigate genome wide transcription differentiation between North and South that might contribute to the clinal phenotypic variation, we compared RNA expression patterns during development of D. melanogaster from tropical northern and temperate southern populations using whole genome tiling arrays. We found that genes that were differentially expressed between the cline ends were generally associated with metabolism and growth, and experimental alteration of expression of a sample of them generally resulted in altered body size in the predicted direction, sometimes significantly so. We further identified the serpent (srp) transcription factor binding sites to be enriched near genes up-regulated in expression in the south. Analysis of clinal populations revealed a significant cline in the expression level of srp. Experimental over-expression of srp increased body size, as predicted from its clinal expression pattern, suggesting that it may be involved in regulating adaptive clinal variation in Drosophila. This study identified a handful of genes that contributed to clinal phenotypic variation through altered gene expression level, yet misexpression of individual gene led to modest body size change
    • …
    corecore